

Enhanced Analytical Simulation Tool (EASiTool) for CO₂ Storage Capacity Estimation and Uncertainty Quantification DE-FE0009301

Presenter: Alex Sun Bureau of Economic Geology, University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary

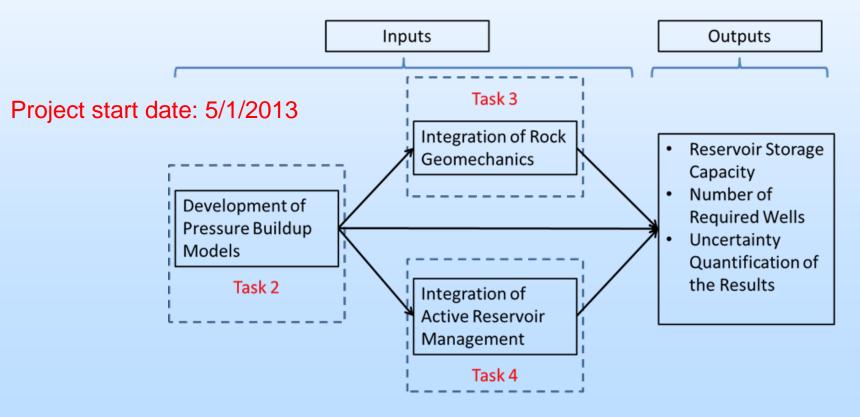
Benefit to the Program

- Major goal
 - Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Project benefit
 - This research project is developing an Enhanced Analytical Simulation Tool (EASiTool) for simplified reservoir models to predict storage capacity of brine formations.
 - EASiTool will consider advanced two-phase flow theory, geo-mechanically imposed limitations and brine management to estimate the storage capacity in open and closed boundary aquifers.
 - EASiTool will also perform uncertainty quantification.

Project Overview: Goals and Objectives

- Project goals and objectives
 - EASiTool is intended for technical and nontechnical users with minimum engineering knowledge to achieve a fast, reliable and science-based estimate of storage capacity for brine formations by using analytical and semi-analytical models.
 - At the end of the first year of project, first version of the EASiTool will be available to the public. This package is standalone and no license is required.
 - Second version of EASiTool will incorporate geomechanics.
 - Third version of EASiTool will incorporate brine management scenarios.

Technical Status-1


- An analytical based, Enhanced Analytical Simulation Tool (EASiTool) will be developed for technical and non-technical users.
- EASiTool will include closed-form analytical/semi-analytical solutions.
- It is intended to be very user friendly, at the same time analytical models behind the EASiTool will be cutting-edge models.
- EASiTool will incorporate effects of rock geomechanics, evaporation of brine near the wellbore as well as brine extraction.
- A net present value (NPV) based analysis will be implemented to devise the best field development.
- Uncertainty quantification (UQ) of the results based on Monte Carlo method will be provided.

Technical Status-2

- Currently under Task 2, analytical models are gathered from literature to be implemented in Goldsim software.
- New models is under development to estimate the storage capacity in multiwell injection scenarios.

Accomplishments to Date-1

- Suitable infrastructure and teaming arrangements established
- Literature review to investigate the analytical models carried out.
- Public website created to post project updates and eventually upload the first version of software

(http://www.beg.utexas.edu/gccc/EASiTool/index.php)

progresses.

Accomplishments to Date-2

- Selected models implemented into the Goldsim.
- Validation of the analytical models is done. As more models is integrated validation process will continue.
- Interface of the software is designed and is developing as project

Imperature (C) 40 Index fraction of IAD 10 Porosity 11 Radius of brine aquifer (m) 12 Radius of brine aquifer (m) 13330 Permeability (m?) Mole fraction of HDO 1000000000000000000000000000000000000	Input						Economi Geology
essure (MPa) 10 Ponsity p22 159 alinty of brine (molikg) 1 Radius of brine aquifer (m) 15200 Permeability (m ²) Mole fraction of H ₂ O p0017597 Mole fraction of the p05 miletion rate (kg/day) p000 frical gas saturation p11 Time (day) p55 Mole fraction of precitated salt, S ₄ p01220 Location of trailing shock (m) p.19275 CO2 saturation S ₄ , at trailing shock (m) 842477							
essure (MPa) 10 Ponsity 0.2 alinity of brine (molifig) 1 Radius of brine aquifer (m) 112200 Mole fraction of H2O 0.0007597 Mole fraction of H2O 0.0005599 Density of CO2 0.0077997 Mole fraction of H2O 0.0005599 Density of CO2 0.000 B22 226 kg /m ⁻³ Fe-15 1/2 Fe-15 1	mperature (C)	40	Thickness of aquifer (m)	50			
Mole fraction of CO2 0.0177697 Mole fraction of H2O 0.00405569 Density of CO2 682226 kg/m*3 Injection rate (kg/day) p000 Injection rate (kg/day) p000 Output Volume fraction of precitated sait, Su 0.01228 Location of trailing shock (m) 0.15275 CO2 p31 ad point relative permeability of CO2 p3 awer law exponent for relative permeability of brine 3	essure (MPa)	10	Porosity	0.2	1-S ₈		
Mole fraction of CO2 0.0177597 Mole fraction of LO2 0.0177597 Mole fraction of LO2 0.00405569 Density of CO2 652 228 kg/m ⁻³ SgT 27 residual saturation 0.1 Injection rate (kg/day) 2000 Injection of precisted salt, Sa 0.01280 Location of trailing shock (m) 0.150575 CO2 0.3 Injection of trailing shock (m) 9.42407 Injection of trailing shock (m) 9.42407	alinity of brine (mol/kg)	1	Radius of brine aquifer (m)				
Mole fraction of H2O 000405509 Density of CO2 052225kg/m ⁻¹ 3 re-13 re-13 re-13 re-12 re-1 re-12			Permeability (m²)		SgL		
Image: Instruction of Density of CO2 Injection rate (kg/day) D000 Insidual saturation 0.5 Injection rate (kg/day) D000 Itical gas saturation 0.1 Time (day) 365 Id-point relative permeability of brine 1 Location of trailing shock (m) 0.10200 Id-point relative permeability of DO2 0.3 CO2 saturation Sg, at trailing shock (m) 0.10200 Invertave exponent for relative permeability of brine 1 Location of trailing shock (m) 0.42407			1e-15	1e-12	Sgt		
Leading of CL2 622 228 kg hr 3 zr z. rsidual saturation 0.5 Injection rate (kg/day) p000 Output trical gas saturation 0.1 Time (day) 365 Volume fraction of precitated salt, Ss 0.01200 d-point relative permeability of brine 1 CO2 saturation Sg, at trailing shock (m) 0.195075 id point relative permeability of brine 1 CO2 saturation Sg, at trailing shock (m) 9.1507 wwe law exponent for relative permeability of brine 3 Location of trailing shock (m) 9.42407			1e-13				
titical gas saturation 0.1 Time (day) 365 Volume fraction of precitated salt, S _s 0.01280 nd-point relative permeability of brine 1 Location of trailing shock (m) 0.10275 ad point relative permeability of CO2 0.3 CO2 saturation S _{pi} at trailing shock (m) 0.51 avere law exponent for relative permeability of brine 3 Location of trailing shock (m) 9.42407	Density of CO ₂	622.226 kg/m^3				Zĭ	Zi,
tical gas saturation 0.1 Time (day) 365 Volume fraction of precitated salt, S _s 0.01280 td-point relative permeability of brine 1 Location of trailing shock (m) 0.10275 ud-point relative permeability of CO2 0.3 CO2 saturation S _{pk} at trailing shock (m) 0.51 weer law exponent for relative permeability of brine 3 Location of trailing shock (m) 9.42407			Iniantian ento (ka(dau)			Output	
nd-point relative permeability of brine I I nd-point relative permeability of brine I Location of trailing shock (m) 0.190575 cO2 saturation S _k , at trailing shock 0.51 CO2 saturation S _k , at trailing shock (m) 9.42407							
nd point relative permeability of CO ₂ 03 Weer law exponent for relative permeability of brine 3 CO ₂ saturation S _{pk} at trailing shock (m) 9.42407	itical gas saturation	0.1	Time (day)	365		volume fraction of precitated sait, 55	0.01298
wer law exponent for relative permeability of brine 3	d-point relative permeability	of brine	_			Location of trailing shock (m)	0.190575
	nd-point relative permeability	of CO ₂ 0.3				CO_2 saturation S_{gL} at trailing shock	0.51
wer-faw exponent for relative permeability of CO ₂ 3 CO ₂ saturation S ₉ r at leading shock 0.33	wer-law exponent for relativ	e permeability of brine	3			Location of trailing shock (m)	9.42407
	ower-law exponent for relation	e permeability of CO2	3	Run		$\ensuremath{\text{CO}}_2$ saturation S_{gT} at leading shock	0.33
						L	

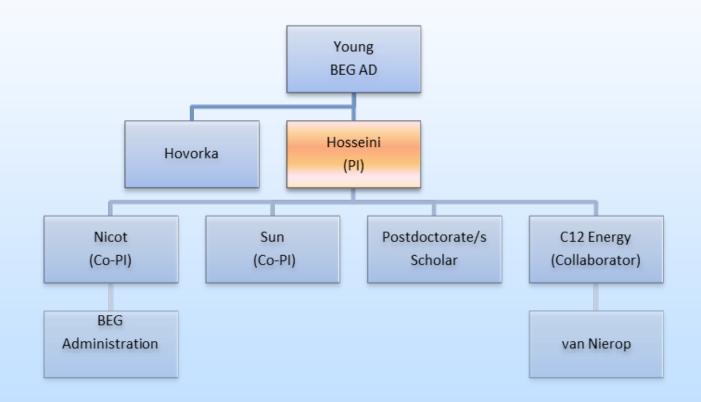
Summary

- EASiTool development started 5/1/2013 and first version of software will be available by 5/1/2014.
- Analytical models that consider CO₂ dissolution, brine evaporation, salt precipitation are implemented into the software.
- Current models are designed for single well models in open and closed boundary conditions.
- EASiTool will be available online for free download.

Future Plans

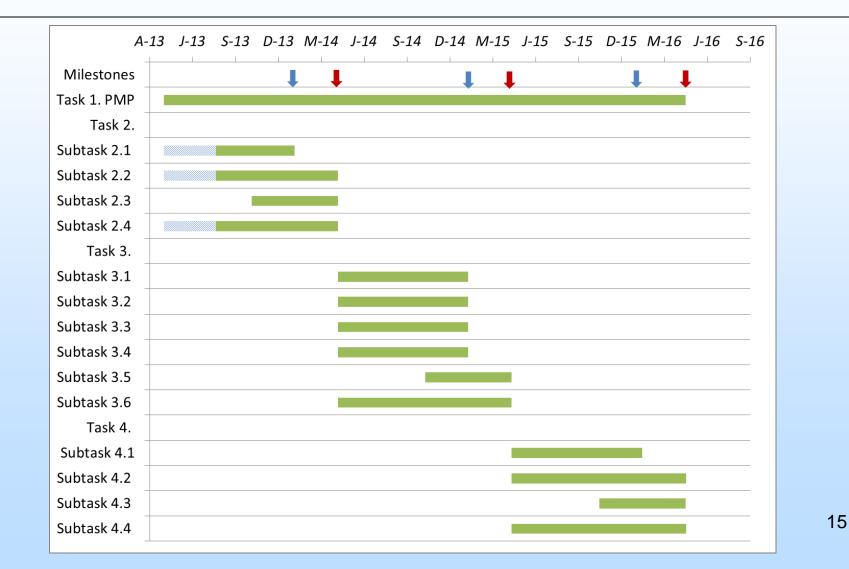
- Development of the analytical models for multi-well scenarios in open and closed boundary brine aquifers.
- Adding uncertainty quantification capabilities to the software through running Monte Carlo simulations.
- Further development of the interface.
- Beta testing of the software by C12Energy.

END


Appendix

- Organization Chart
- Gantt Chart
- Bibliography

Organization Chart


Organization Chart

Project PI: Seyyed A. Hosseini							
Task 1 Project Management and Planning	Task 2 Development of Analytical Solutions for Pressure Buildup	Task 3 Rock Geomechanics Impact on Pressure Buildup and Capacity Estimation	Task 4Brine-ManagementImpact on CO2Injectivity and StorageCapacity				
Task Leader/Backup Nicot/Hosseini	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun				
Task 1 Team Nicot/Hosseini/ Young/Hovorka	Task 2 Team Subtask 2.1 Hosseini/Sun/ Postdoc/s Subtask 2.2 Hosseini/Sun/C12 Energy Subtask 2.3 Sun/Hosseini Subtask 2.4 Sun/Hosseini	Task 3 Team Subtask 3.1 Hosseini/Sun/ Postdoc/s Subtask 3.2 Hosseini/Sun/ Postdoc/s Subtask 3.3 Sun/Hosseini Subtask 3.4 Hosseini/Sun Subtask 3.5 Sun/Hosseini Subtask 3.6 Sun/Hosseini	Task 4 Team Subtask 4.1 Hosseini/Sun/ Postdoc/s Subtask 4.2 Sun/Hosseini/ Postdoc/s Subtask 4.3 Sun/Hosseini Subtask 4.4 Sun/Hosseini				

Gantt Chart

Bibliography